Abstract

Abstract High-frequency observations of surface winds over the open ocean are available only at limited locations. However, these observations are essential for assessing atmospheric influences on the ocean, validating reanalysis products, and building parameterization schemes. By analyzing high-frequency measurements from the Global Tropical Moored Buoy Array, the effects of subdaily winds on the mean surface wind stress magnitude are systematically examined. Subdaily winds account for 12.4% of the total stress magnitude on average. The contribution is enhanced over the intertropical convergence zone and reaches a maximum (28.5%) in the equatorial western Pacific. The magnitude of the contribution is primarily determined by the kinetic energy of subdaily winds. Compared to the buoy observations, the ERA5 and MERRA2 subdaily winds underestimate this contribution by 51% and 63% due to underestimations of subdaily kinetic energy, leading to 7% and 8% underestimations in the total stress magnitude, respectively. Two new gustiness parameterization schemes related to precipitation are developed to account for the effect of subdaily winds, explaining ∼80% of the contribution from subdaily winds. Considering the importance of wind stress for ocean–atmosphere interactions, the inclusion of these parameterization schemes in climate models is expected to substantially improve simulations of large-scale climate variability. Significance Statement Surface wind stress drives upper-ocean circulation, which is critical for the redistribution of mass, momentum, and energy in the ocean. Moreover, it is one of the key factors controlling oceanic turbulent mixing and therefore has significant impacts on the distribution of temperature, salinity, and associated ocean variability. Using high-resolution buoy observations, this study highlights the importance of subdaily winds for integrated wind stress estimates. In addition, it finds that current state-of-the-art and widely used reanalysis products largely underestimate the effect of subdaily winds. Two new parameterization schemes are developed, leading to a better representation of the effect of subdaily winds. Including the proposed parameterization schemes in climate models is expected to substantially improve their simulations of large-scale climate variability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.