Abstract
Photoactivated adenylyl cyclases are powerful tools for optogenetics and for investigating signal transduction mechanisms in biological photoreceptors. Because of its large increase in enzyme activity in the light, the BLUF (blue light sensor using flavin adenine dinucleotide)-activated adenylyl cyclase (bPAC) from Beggiatoa sp. is a highly attractive model system for studying BLUF domain signaling. In this report, we studied the influence of site-directed mutations within the BLUF domain on the light regulation of the cyclase domain and determined key elements for signal transduction and color tuning. Photoactivation of the cyclase domain is accomplished via strand β5 of the BLUF domain and involves the formation of helical structures in the cyclase domain as assigned by vibrational spectroscopy. In agreement with earlier studies, we observed severely impaired signaling in mutations directly on strand β5 as well as in mutations affecting the hydrogen bond network around the flavin. Moreover, we identified a bPAC mutant with red-shifted absorbance and a decreased dark activity that is highly valuable for long-term optogenetic experiments. Additionally, we discovered a mutant that forms a stable neutral flavin semiquinone radical in the BLUF domain and surprisingly exhibits an inversion of light activation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.