Abstract

We consider the approximation of the distribution of the sum of independent but not necessarily identically distributed random variables by a compound Poisson distribution and also by a finite signed measure of higher accuracy. Using Kerstan's method, some new bounds for the total variation distance are presented. Recently, several authors had difficulties applying Stein's method to the problem given. For instance, Barbour, Chen and Loh used this method in the case of random variables on the nonnegative integers. Under additional assumptions, they obtained some bounds for the total variation distance containing an undesirable log term. In the present paper, we shall show that Kerstan's approach works without such restrictions and yields bounds without log terms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.