Abstract
We investigate a codirectional nonlinear coupler composed of two Kerr nonlinear waveguides. Unlike the conventional device, the linear coupling between the guides is supposed to be a variable function of the propagation distance. We calculate quantum statistical and dynamical properties of the Kerr nonlinear coupler with a coherent input and analyse the influence of coupling variation on oscillations in mean photon number. The possibility to control the switching characteristics and principal squeezing effect by adjusting the form of coupling function is shown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.