Abstract

Manifold learning methods for unsupervised nonlinear dimensionality reduction have proven effective in the visualization of high dimensional data sets. When dealing with classification tasks, supervised extensions of manifold learning techniques, in which class labels are used to improve the embedding of the training points, require an appropriate method for out-of-sample mapping.In this paper we propose multi-output kernel ridge regression (KRR) for out-of-sample mapping in supervised manifold learning, in place of general regression neural networks (GRNN) that have been adopted by previous studies on the subject. Specifically, we consider a supervised agglomerative variant of Isomap and compare the performance of classification methods when the out-of-sample embedding is based on KRR and GRNN, respectively. Extensive computational experiments, using support vector machines and k-nearest neighbors as base classifiers, provide statistical evidence that out-of-sample mapping based on KRR consistently dominates its GRNN counterpart, and that supervised agglomerative Isomap with KRR achieves a higher accuracy than direct classification methods on most data sets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.