Abstract

We evaluate the robustness of five regression techniques for monocular 3D pose estimation. While most of the discriminative pose estimation methods focus on overcoming the fundamental problem of insufficient training data, we are interested in characterizing performance improvement for increasingly large training sets. Commercially available rendering software allows us to efficiently generate large numbers of realistic images of poses from diverse actions. Inspired by recent work in human detection, we apply PLS and kPLS regression to pose estimation. We observe that kPLS regression incrementally approximates GP regression using the strongest nonlinear correlations between image features and pose. This provides robustness, and our experiments show kPLS regression is more robust than two GP-based state-of-the-art methods for pose estimation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.