Abstract
We revisit the problem of estimating the spot volatility of an Itô semimartingale using a kernel estimator. A central limit theorem (CLT) with an optimal convergence rate is established for a general two-sided kernel. A new pre-averaging/kernel estimator for spot volatility is also introduced to handle the microstructure noise of ultra high-frequency observations. A CLT for the estimation error of the new estimator is obtained, and the optimal selection of the bandwidth and kernel function is subsequently studied. It is shown that the pre-averaging/kernel estimator’s asymptotic variance is minimal for two-sided exponential kernels, hence justifying the need of working with kernels of unbounded support. Feasible implementation of the proposed estimators with optimal bandwidth is developed as well. Monte Carlo experiments confirm the superior performance of the new method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.