Abstract

Salient instance segmentation (SIS) is an emerging field that evolves from salient object detection (SOD), aiming at identifying individual salient instances using segmentation maps. Inspired by the success of dynamic convolutions in segmentation tasks, this article introduces a keypoints-based SIS network (KepSalinst). It employs multiple keypoints, that is, the center and several peripheral points of an instance, as effective geometrical guidance for dynamic convolutions. The features at peripheral points can help roughly delineate the spatial extent of the instance and complement the information inside the central features. To fully exploit the complementary components within these features, we design a differentiated patterns fusion (DPF) module. This ensures that the resulting dynamic convolutional filters formed by these features are sufficiently comprehensive for precise segmentation. Furthermore, we introduce a high-level semantic guided saliency (HSGS) module. This module enhances the perception of saliency by predicting a map for the input image to estimate a saliency score for each segmented instance. On four SIS datasets (ILSO, SOC, SIS10K, and COME15K), our KepSalinst outperforms all previous models qualitatively and quantitatively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.