Abstract

Over time, the renowned Kyoto Encyclopedia of Genes and Genomes (KEGG) has grown to become one of the most comprehensive online databases for biological procedures. The majority of the data are stored in the form of pathways, which are graphs that depict the relationships between the diverse items participating in biological procedures, such as genes and chemical compounds. However, the size, complexity, and diversity of these graphs make them difficult to explore and understand, as well as making it difficult to extract a clear conclusion regarding their most important components. In this regard, we present KEGGSum, a system enabling the efficient and effective summarization of KEGG pathways. KEGGSum receives a KEGG identifier (Kid) as an input, connects to the KEGG database, downloads a specialized form of the pathway, and determines the most important nodes in the graph. To identify the most important nodes in the KEGG graphs, we explore multiple centrality measures that have been proposed for generic graphs, showing their applicability to KEGG graphs as well. Then, we link the selected nodes in order to produce a summary graph out of the initial KEGG graph. Finally, our system visualizes the generated summary, enabling an understanding of the most important parts of the initial graph. We experimentally evaluate our system, and we show its advantages and benefits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.