Abstract

β-amyloid peptides (Aβ) induced oxidative damage contributes to the pathogenesis of neurodegenerative diseases, and the cerebrovascular system is more vulnerable to oxidative stress. Our earlier study showed a clue that Genistein (Gen) might activate the Nf-E2 related factor 2 (Nrf2) pathway to protect cerebrovascular cells from oxidative damage induced by Aβ, but the specific mechanisms and regulation targets are unclear. In this study, the anti-oxidative effects and the possible targets of Gen on regulating the Nrf2 pathway in bEnd.3 cells were investigated. Cells were divided into control, Aβ25-35, Gen, and Gen+Aβ25-35 groups. Cell viability, levels of malondialdehyde (MDA), Superoxide Dismutase (SOD) activity, and nitrotyrosine were evaluated. Moreover, mRNA and/or protein expressions of Nrf2 and kelchlike ECH-associated protein 1 (Keap1) were measured. Then we transfected Keap1 over-expressed plasmid into bEnd.3 cells and measured the protein expressions of Nrf2 pathway related factors. Data showed that Gen could inhibit the over-production of MDA and nitrotyrosine and activate SOD activity. Furthermore, we discovered that Gen could up-regulate Nrf2 mRNA and protein expression while down-regulating Keap1 protein expression. The Keap1 over-expressed plasmid study revealed that the up-regulation of Nrf2 protein expression induced by Gen pretreatment could be blocked by transfection of Keap1 over-expressed plasmid, and the same results were observed in Nrf2 downstream factors. Gen could alleviate the cerebrovascular cells' oxidative damage induced by Aβ25-35 by regulating the Nrf2 pathway, and Keap1 might be one of the targets of Gen in activating the Nrf2 pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.