Abstract

Although many species of the genus Trigona have been taxonomically described, cytogenetic studies of these species are still rare. The aim of the present study was to obtain cytogenetic data by conventional staining, C banding and fluorochrome staining for the karyotype characterization of the species Trigona fulviventris. Cytogenetic analysis revealed that this species possesses a diploid chromosome number of 2n = 32, different from most other species of this genus studied so far. This variation was probably due to the centric fusion in a higher numbered ancestral karyotype, this fusion producing the large metacentric chromosome pair and the lower chromosome number observed in Trigona fulviventris. Heterochromatin was detected in the pericentromeric region of the first chromosome pair and in one of the arms of the remaining pairs. Base-specific fluorochrome staining with 4'-6-diamidino-2-phenylindole (DAPI) showed that the heterochromatin was rich in AT base pairs (DAPI+) except for pair 13, which was chromomycin A3 (CMA3) positive indicating an excess of GC base pairs. Our data also suggests that there was variation in heterochromatin base composition.

Highlights

  • Many species of the genus Trigona have been taxonomically described, cytogenetic studies of these species are still rare

  • Subsequent studies on different meliponine species suggested that centric fission has been the main mechanism involved in the karyotype evolution within the group, since the polyploidy hypothesis does not explain the presence of heterochromatin or morphological chromosome variations observed in some species (Pompolo and Campos, 1995)

  • In the present study we developed a detailed analysis of the karyotype of T. fulviventris based on conventional staining, C banding and fluorochrome staining (4’-6diamidino-2-phenylindole - DAPI and chromomycin A3 CMA3)

Read more

Summary

Introduction

Many species of the genus Trigona have been taxonomically described, cytogenetic studies of these species are still rare. Subsequent studies on different meliponine species suggested that centric fission has been the main mechanism involved in the karyotype evolution within the group, since the polyploidy hypothesis does not explain the presence of heterochromatin or morphological chromosome variations observed in some species (Pompolo and Campos, 1995).

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.