Abstract

Recent advances in Kalman filtering to estimate system state and parameters in nonlinear systems have offered the potential to apply such approaches to spatiotemporal nonlinear systems. We here adapt the nonlinear method of unscented Kalman filtering to observe the state and estimate parameters in a computational spatiotemporal excitable system that serves as a model for cerebral cortex. We demonstrate the ability to track spiral wave dynamics, and to use an observer system to calculate control signals delivered through applied electrical fields. We demonstrate how this strategy can control the frequency of such a system, or quench the wave patterns, while minimizing the energy required for such results. These findings are readily testable in experimental applications, and have the potential to be applied to the treatment of human disease.

Highlights

  • In 1809, Carl Frederic Gauss [1] dealt in depth with problem of estimation of planetary and comet orbit parameters when the terrestrial observational data was sparse and imprecise

  • We here adapt the nonlinear method of unscented Kalman filtering (UKF) to observe the state and estimate parameters in a computational spatiotemporal excitable system that serves as a model of cerebral cortex

  • We employ the modifications to the Wilson-Cowan equations as suggested by Pinto and Ermentrout [2], to model an experimental system in which we measure the wave dynamics of mammalian middle cortical layers using voltage sensitive dye

Read more

Summary

Introduction

In 1809, Carl Frederic Gauss [1] dealt in depth with problem of estimation of planetary and comet orbit parameters when the terrestrial observational data was sparse and imprecise. Gauss's problem bears strong resemblance to the problem we face in the estimation of neuronal state through electrical or optical measurements. Recent advances in Kalman filtering to estimate system state and parameters in nonlinear systems has offered the potential to apply such approaches to spatiotemporal neuronal systems. We here adapt the nonlinear method of unscented Kalman filtering (UKF) to observe the state and estimate parameters in a computational spatiotemporal excitable system that serves as a model of cerebral cortex

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.