Abstract

This study investigates contributions of peripheral kainate receptors to acute nociception and persistent inflammatory pain in rat. Immunohistochemical analysis of kainate receptor expression using antibodies recognizing glutamate receptor subunits 5, 6, and 7 demonstrates that 28% of unmyelinated axons in normal digital nerve are positively labeled. Following intraplantar injection of complete Freund’s adjuvant, a significant increase in glutamate receptor subunits 5, 6, and 7-labeled axons occurs at 2 days (40%), but not 7 (31%) or 14 days (28%) post-complete Freund’s adjuvant. In behavioral studies, we confirm an increased mechanical sensitivity in complete Freund’s adjuvant-injected hind paws. Furthermore, activation of kainate receptors following intraplantar injection of 1.0mM kainate in normal animals results in a mechanical sensitivity similar to that observed in inflamed animals. A 1.0mM kainate injection into inflamed hind paws further enhances the mechanical sensitivity. Injection of the non– N-methyl- d-aspartate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (0.1mM) reverses complete Freund’s adjuvant-induced mechanical sensitivity through a local effect. In single unit recordings from nociceptors in a glabrous skin-nerve preparation, mechanical sensitization is present in inflamed skin evidenced by a decrease in mechanical threshold and an increase in discharge rate during a suprathreshold, constant force stimulus. Thermal sensitization is also present evidenced by a decrease in heat threshold. There is a dose-dependent increase in kainate-induced nociceptor activity in both normal and inflamed skin but the kainate required to induce activation is reduced in inflamed skin. Although proportions of kainate-activated nociceptors are the same in normal and inflamed skin, the kainate-induced mean discharge rate is significantly enhanced in inflamed skin. Exposure of normal and inflamed nociceptors to 0.3mM kainate sensitizes fibers to re-application of kainate and heat. This sensitization is blocked in the presence of 6-cyano-7-nitroquinoxaline-2,3-dione or the glutamate receptor subunit 5 selective antagonist 3 S,4a R,6 S,8a R-6-[4-carboxy-phenyl] methyl-1,2,3,4,4a,5,6,7,8,8a-deca-hydroisoquinoline-3-carboxylic acid. The data indicate that peripheral kainate receptors not only play an important role in normal nociception but also contribute to mechanical sensitivity and heat sensitization accompanying inflammatory pain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.