Abstract
In order to better understand the reason behind model behaviors (i.e., making predictions), most recent works have exploited generative models to provide complementary explanations. However, existing approaches in NLP mainly focus on ``WHY A'' rather than contrastive ``WHY A NOT B'', which is shown to be able to better distinguish confusing candidates and improve data efficiency in other research fields.In this paper, we focus on generating contrastive explanations with counterfactual examples in NLI and propose a novel \textbf{K}nowledge-\textbf{A}ware \textbf{C}ontrastive \textbf{E}xplanation generation framework (\textbf{KACE}).Specifically, we first identify rationales (i.e., key phrases) from input sentences, and use them as key perturbations for generating counterfactual examples. After obtaining qualified counterfactual examples, we take them along with original examples and external knowledge as input, and employ a knowledge-aware generative pre-trained language model to generate contrastive explanations. Experimental results show that contrastive explanations are beneficial to fit the scenarios by clarifying the difference between the predicted answer and other possible wrong ones. Moreover, we train an NLI model enhanced with contrastive explanations and achieves an accuracy of 91.9\% on SNLI, gaining improvements of 5.7\% against ETPA (``Explain-Then-Predict-Attention'') and 0.6\% against NILE (``WHY A'').
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.