Abstract

Endocrine tumors such as aldosterone-producing adrenal adenomas (APAs), a cause of severe hypertension, feature constitutive hormone production and unrestrained cell proliferation; the mechanisms linking these events are unknown. We identify two recurrent somatic mutations in and near the selectivity filter of the potassium (K(+)) channel KCNJ5 that are present in 8 of 22 human APAs studied. Both produce increased sodium (Na(+)) conductance and cell depolarization, which in adrenal glomerulosa cells produces calcium (Ca(2+)) entry, the signal for aldosterone production and cell proliferation. Similarly, we identify an inherited KCNJ5 mutation that produces increased Na(+) conductance in a Mendelian form of severe aldosteronism and massive bilateral adrenal hyperplasia. These findings explain pathogenesis in a subset of patients with severe hypertension and implicate loss of K(+) channel selectivity in constitutive cell proliferation and hormone production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.