Abstract
The paper presents a theoretical study of hypersingular equations of the general form for problems of electromagnetic-wave diffraction on open surfaces of revolution. Justification of the Galerkin is given. The method is based on the separation of the principal term and its analytic inversion. The inverse of the principal operator is completely continuous. On the basis of this result, the equivalence of the initial equation to a Fredholm integral equation of the second kind is proven. An example of numerical solution with the use of Chebyshev polynomials of the second kind is considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computational Mathematics and Mathematical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.