Abstract

We are interested in the connection between a metastable continuous state space Markov process (satisfying e.g. the Langevin or overdamped Langevin equation) and a jump Markov process in a discrete state space. More precisely, we use the notion of quasi-stationary distribution within a metastable state for the continuous state space Markov process to parametrize the exit event from the state. This approach is useful to analyze and justify methods which use the jump Markov process underlying a metastable dynamics as a support to efficiently sample the state-to-state dynamics (accelerated dynamics techniques). Moreover, it is possible by this approach to quantify the error on the exit event when the parametrization of the jump Markov model is based on the Eyring-Kramers formula. This therefore provides a mathematical framework to justify the use of transition state theory and the Eyring-Kramers formula to build kinetic Monte Carlo or Markov state models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.