Abstract

This paper proposes a novel deep reinforcement learning (DRL) control strategy for an integrated offshore wind and photovoltaic (PV) power system for improving power generation efficiency while simultaneously damping oscillations. A variable-speed offshore wind turbine (OWT) with electrical torque control is used in the integrated offshore power system whose dynamic models are detailed. By considering the control system as a partially-observable Markov decision process, an actor-critic architecture model-free DRL algorithm, namely, deep deterministic policy gradient, is adopted and implemented to explore and learn the optimal multi-objective control policy. The potential and effectiveness of the integrated power system are evaluated. The results imply that an OWT can respond quickly to sudden changes of the inflow wind conditions to maximize total power generation. Significant oscillations in the overall power output can also be well suppressed by regulating the generator torque, which further indicates that complementary operation of offshore wind and PV power can be achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.