Abstract

It is commonly expected that network densification will play an important role in achieving the capacity demands of 5G communication networks. While densification is introduced to improve the spectral efficiency and area-capacity, it also results in an infrastructure that is perfectly suitable for user node (UN) positioning. However, so far this compelling opportunity has not been clearly recognized in the literature. In this paper, we therefore propose to make always positioning an integral part of 5G networks such that highly accurate user location estimates are available at any given moment but without draining the UN batteries. We furthermore propose an extended Kalman filter (EKF) that tracks the user location based on the fusion of direction of arrival (DoA) and time of arrival (ToA) estimates obtained at the access nodes (ANs) of the 5G network. Since ToA estimates are typically not useful for positioning unless the UN is synchronized with the network, we include a realistic clock model within the DoA/ToA EKF. This addition makes it possible to estimate the offset of the imperfect UN clock, along with the UN position. In an extensive analysis that is based on specific 5G simulation models, we then quantify the enormous potential of high accuracy positioning in 5G networks, in general, and the proposed DoA/ToA EKF, in particular. Moreover, we demonstrate that the proposed DoA/ToA EKF substantially outperforms the classical DoA-only EKF and is furthermore also able to handle practically extremely relevant situations where the DoA-only EKF fails to position the UN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.