Abstract

In this work we aim to design simple, distributed self-configuring solutions for the problem of route selection and channel and power allocation in multihop autonomous wireless systems using a game theoretic perspective. We propose and compare three games with different levels of complexity: a potential flow game where players need complete network knowledge, a local flow game requiring full information of the flow and a low complexity cooperative link game which works with partial information of the flow. All these games have been designed to always assure the convergence to a stable point in order to be implemented as distributed algorithms. To evaluate their quality, we also obtain the best achievable performance in the system using mathematical optimization. The system is modeled with the physical interference model and two different definitions of the network utility are considered: the number of active flows and the aggregated capacity in bps. Results show that the proposed games approach the centralized solution, and specially, that the simpler cooperative link game provides a performance close to that of the flow games.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.