Abstract

Device-to-device (D2D) communication plays an important role in the next generation of communication systems. Enabling D2D communication decreases latency and expands the coverage of a cell in cellular networks. In addition, D2D underlaying cellular users benefit from high spectral efficiency. However, it creates interference to cellular communications. In this paper, we propose a genetic algorithm-based method to minimize the interference and maximize the spectral efficiency. One of the advantages of genetic algorithm is that it escapes from local maximums and evolves toward global maximum by searching different parts of search space simultaneously. Since D2D underlay cellular network degrades the signal-to-interference plus noise ratio (SINR), a minimum SINR is considered for cellular users. Numerical evaluations demonstrate the superior performance of the proposed technique in terms of spectral efficiency and interference mitigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.