Abstract

The multiple access broadcast (MABC) is an effective two phases transmission (2P) ANC protocol for the half-duplex (HD) communication mode. However, MABC does not make use of channel gain of the direct link (DL) no matter how strong it is. On the other hand, the time division broadcast (TDBC) is known as a three phases transmission (3P) protocol which enables transceivers to utilize DL and thus offers the possibility to achieve higher performance compared with the MABC at the expense of a reduced spectral efficiency due to the one extra transmission phase. In this paper, we investigate a joint single relay selection and power allocation schemes for energy-efficient wireless communication systems with analog network coding (ANC) for TDBC, where two-way relay channel with two end nodes and N parallel relay nodes is considered under an assumption of perfect channel-state information (CSI). Our objective is to minimize the total system transmit power consumption under quality-of-service (QoS) constraints for TDBC protocol with joint single relay selection and nodes power allocation. In addition, a zero-forcing based relay signal combining technique that combines the signals received at the 1st and 2nd transmission phases, also known as zero-forcing relay power allocation (ZF-RPA), is also investigated. Numerical simulation shows that the traditional VG-RPA is more energy-efficient than the ZF-RPA scheme for TDBC in cases with and without utilizing DL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.