Abstract

Cooperative beamforming and jamming are two efficient schemes to improve the physical-layer security of a wireless relay system in the presence of passive eavesdroppers. However, in most works these two techniques are adopted separately. In this letter, we propose a joint cooperative beamforming and jamming scheme to enhance the security of a cooperative relay network, where a part of intermediate nodes adopt distributed beamforming while others jam the eavesdropper, simultaneously. Since the instantaneous channel state information (CSI) of the eavesdropper may not be known, we propose a cooperative artificial noise transmission based secrecy strategy, subjected to the individual power constraint of each node. The beamformer weights and power allocation can be obtained by solving a second-order convex cone programming (SOCP) together with a linear programming problem. Simulations show the joint scheme greatly improves the security.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.