Abstract
5G Radio Access Networks (RANs) are supposed to increase their capacity by 1000x to handle growing number of connected devices and increasing data rates. The concept of cloud-RAN (CRAN) has been recently proposed to decouple digital units (DUs) and radio units (RUs) of base stations (BSs), and centralize DUs into central offices. CRAN can ease the implementation of advanced radio coordination techniques, e.g., Coordinated Multi-Point (CoMP) Transmission/Reception, to enhance its system throughput. However, separating DUs and RUs, and implementing CoMP in CRAN require low-latency and high-bandwidth connectivity links, called fronthaul. Today, consensus has not yet been achieved on how BSs, fronthaul, and central offices will be orchestrated to enhance the system throughput. In this study, we present a CRAN over Passive Optical Network (PON) architecture called virtualized-CRAN (V-CRAN). V-CRAN leverages the concept of virtualized PON (VPON) that can dynamically associate any RU to any DU so that several RUs can be coordinated by the same DU, and the concept of virtualized BS (V-BS) that can jointly transmit common signals from multiple RUs to a user. We propose a novel mathematical model based on constraint programming for joint allocation of radio, optical network, and baseband processing resources to enhance RAN throughput, and we solve it by optimally forming VPONs and V-BSs. Comprehensive simulations show that V-CRAN can enhance the system throughput and the efficiency of resource utilization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.