Abstract
In large data warehousing environments, it is often advantageous to provide fast, approximate answers to complex aggregate queries based on statistical summaries of the full data. In this paper, we demonstrate the difficulty of providing good approximate answers for join-queries using only statistics (in particular, samples) from the base relations. We propose join synopses as an effective solution for this problem and show how precomputing just one join synopsis for each relation suffices to significantly improve the quality of approximate answers for arbitrary queries with foreign key joins. We present optimal strategies for allocating the available space among the various join synopses when the query work load is known and identify heuristics for the common case when the work load is not known. We also present efficient algorithms for incrementally maintaining join synopses in the presence of updates to the base relations. Our extensive set of experiments on the TPC-D benchmark database show the effectiveness of join synopses and various other techniques proposed in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.