Abstract

This paper investigates the effects of varying phaselocked loop (PLL) design parameters on timing jitter. The noise due to voltage-controlled oscillator (WO), input clock and buffering clock are considered. First, a closed-form equations are derived that relate PLL output clock jitter to parameters of a second-order PLL, i.e., damping factor and bandwidth. Then the second-order analysis is extended to a third-order PLL with inherent feedback/sampling delay. The sensitivity study clearly illustrates how to select design parameters to obtain minimum output jitter. To verify the analysis experimentally, a digitally tunable PLL architecture is designed and fabricated that allows independent adjustment of loop parameters. The design not only demonstrates the agreement between analysis and theory, but also shows an architecture that minimizes jitter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.