Abstract

Stimuli-triggered nanoplatforms have become attractive candidates for combined strategies for advanced liver cancer treatment. In this study, we designed a light-responsive nanoplatform with folic acid-targeting properties to surmount the poor aqueous stability and photostability of indocyanine green (ICG). In this Janus nanostructure, ICG was released on-demand from mesoporous silica compartments in response to near-infrared (NIR) irradiation, exhibiting predominant properties to convert light to heat in the cytoplasm to kill liver cancer cells. Importantly, the silver ions released from the silver compartment that were triggered by light could induce efficient chemotherapy to supplement photothermal therapy. Under NIR irradiation, ICG-loaded Janus nanoplatforms exhibited synergistic therapeutic capabilities both in vitro and in vivo compared with free ICG and ICG-loaded mesoporous silica nanoparticles themselves. Hence, our Janus nanoplatform could integrate ICG-based photothermal therapy and silver ion-based chemotherapy in a cascade manner, which might provide an efficient and safe strategy for combined liver cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.