Abstract
This paper describes a basic representation of cochlear mechanics. To represent the cochlear partition, we begin with an array of discrete tuned resonators, immersed in fluid. The resonators are stimulated by an impulse from another resonator, which is taken to be the middle ear. A “state space” representation of the classic transmission line model is used to describe the multiple fluid-borne interactions which take place between all the resonators. The overall response seen at the middle ear looks remarkably similar to a click-evoked otoacoustic emission (CEOAE) if the place–frequency map of the cochlea contains tuning irregularities. The paper describes, step by step, how the CEOAEs are generated. We show that impulse responses from each oscillator are transported back to the ear canal, and that these responses add up to create a standing wave pattern in the fluid pressure. This standing wave is the sum of waves repeatedly travelling back and forth between an irregularity and oscillator 1. If only one irregularity is present, the impulse response of oscillator 1 (the “stimulus”) is followed by a weak single oscillation, with the characteristics of a “gammachirp”. If irregularities are present all along the cochlear partition, many gammachirps add up to produce a signal with similar characteristics as a CEOAE measured in a normal hearing ear. The model therefore describes the generation of click-evoked otoacoustic emissions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.