Abstract

Length-dependent charge redistribution in dangling-bond (DB) linear chains fabricated on a hydrogen-terminated $\mathrm{Si}(100)\ensuremath{-}(2\ifmmode\times\else\texttimes\fi{}1)$ surface is analyzed by using scanning tunneling microscopy and first-principles calculations. The second-layer Si atoms are displaced alternately to form pairs with charge redistribution, which is explained by the Jahn-Teller distortion in an artificial pseudomolecule. In a short even-numbered (DB) structure, an unpaired second-layer Si atom exists and behaves as a soliton accompanied by the flip-flop motion of the structure. We point out that the odd-even problem, the edge effect, and the finite length of the DB structures are indispensable to understand the relaxation in the structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.