Abstract

In this paper, the Jacobi stability of a two-degree-of-freedom mechanical system is studied by the innovative application of KCC-theory, namely differential geometric methods. We discuss the Jacobi stability of two equilibria and a periodic orbit by constructing geometric invariants. Both the regions of Jacobi stability and Lyapunov stability are presented to show the difference. We draw the phase portraits of the deviation vector near two equilibria under specific parameter values and initial conditions, and point out the sensitivity of deviation vector to initial conditions. In addition, the corresponding instability exponent and curvature are applicable for predicting the onset of chaos, which help us to detect chaotic behaviors quantitatively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.