Abstract

Triangle listing is a basic operator when dealing with many graph problems. However, in-memory algorithms do not work well with recently developed massive graphs such as social networks because these graphs cannot be accommodated in the memory. Thus, external memory-based algorithms have been proposed recently, but these approaches still require frequent multiple scans of the whole graph on the disk and large volumes of calculations are performed that involve the whole graph during every iteration. In this study, we propose a novel index-based method for listing triangles in massive graphs. First, we present new notions for the vertex range index and potential cone vertex index. Next, we propose an index join-based triangle listing algorithm. Our method accesses the indexed data asynchronously and joins them to list triangles using a multi-threaded parallel processing technique. Based on experiments, we demonstrate that our algorithm outperforms the state-of-the-art solution methods by three to eight times in terms of the wall clock time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.