Abstract

The wavelet frame systems have been extensively studied due to their capability of sparsely approximating piece-wise smooth functions, such as images, and the corresponding wavelet frame-based image restoration models are mostly based on the penalization of the l1 norm of wavelet frame coefficients for sparsity enforcement. In this paper, we focus on the image inpainting problem based on the wavelet frame, propose a weighted sparse restoration model, and develop a corresponding efficient algorithm. The new algorithm combines the idea of iterative support detection method, first proposed by Wang and Yin for sparse signal reconstruction, and the split Bregman method for wavelet frame l1 model of image inpainting, and more important, naturally makes use of the specific multilevel structure of the wavelet frame coefficients to enhance the recovery quality. This new algorithm can be considered as the incorporation of prior structural information of the wavelet frame coefficients into the traditional l1 model. Our numerical experiments show that the proposed method is superior to the original split Bregman method for wavelet frame-based l1 norm image inpainting model as well as some typical l(p) (0 ≤ p < 1) norm-based nonconvex algorithms such as mean doubly augmented Lagrangian method, in terms of better preservation of sharp edges, due to their failing to make use of the structure of the wavelet frame coefficients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.