Abstract
Abstract We consider the problem of estimating a rank-one matrix in Gaussian noise under a probabilistic model for the left and right factors of the matrix. The probabilistic model can impose constraints on the factors including sparsity and positivity that arise commonly in learning problems. We propose a family of algorithms that reduce the problem to a sequence of scalar estimation computations. These algorithms are similar to approximate message-passing techniques based on Gaussian approximations of loopy belief propagation that have been used recently in compressed sensing. Leveraging analysis methods by Bayati and Montanari, we show that the asymptotic behavior of the algorithm is described by a simple scalar equivalent model, where the distribution of the estimates at each iteration is identical to certain scalar estimates of the variables in Gaussian noise. Moreover, the effective Gaussian noise level is described by a set of state evolution equations. The proposed approach to deriving algorithms thus provides a computationally simple and general method for rank-one estimation problems with a precise analysis in certain high-dimensional settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.