Abstract
Randomized approaches for low rank matrix approximations have become popular in recent years and often offer significant advantages over classical algorithms because of their scalability and numerical robustness on distributed memory platforms. We present a distributed implementation of randomized block iterative methods to compute low rank matrix approximations for dense tera-scale matrices. We are particularly interested in the behavior of randomized block iterative methods on matrices with small spectral gaps. Our distributed implementation is based on four iterative algorithms: block subspace iteration, the block Lanczos method, the block Lanczos method with explicit restarts, and the thick-restarted block Lanczos method. We analyze the scalability and numerical stability of the four block iterative methods and demonstrate the performance of these methods for various choices of the spectral gap. Performance studies demonstrate superior runtimes of the block Lanczos algorithms over the subspace power iteration approach on (up to) 16,384 cores of AMOS, Rensselaer's IBM Blue Gene/Q supercomputer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.