Abstract

The solution of Navier–Stokes equations of time-dependent incompressible viscous fluid flow in planar geometry by the Boundary Domain Integral Method (BDIM) is discussed. The introduction of a subdomain technique to fluid flow problems is considered and improved in order to maintain the stability of BDIM. To avoid problems with flow kinematics computation in the sudomain mesh, a segmentation technique is proposed which combines the original BDIM with its subdomain variant and preserves its numerical stability. In order to reduce the computational cost of BDIM, which greatly depends on the solution of systems of linear equations, iterative methods are used. Conjugate gradient methods, conjugate gradients squared and an improved version of the biconjugate gradient method BiCGSTAB, together with the generalized minimal residual method, are used as iterative solvers. Different types of preconditioning, from simple Jacobi to incomplete LU factorization, are carried out and the performance of chosen iterative methods and preconditioners are reported. Test examples include backward facing step flow and flow through tubular heat exchangers. Test computation results show that BDIM is an accurate approximation technique which, together with the subdomain technique and powerful iterative solvers, can exhibit some significant savings in storage and CPU time requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.