Abstract

This paper presents a brief survey of recent works on Iterative Learning Control (ILC) of Energy Management System (EMS) based on a framework of Multi-Agent System (MAS). ILC is a control methodology which is especially suitable for dynamical systems whose control tasks are executed in a finite time interval and are repeated over and over. The key idea of ILC is to take available system information in the past and current runs, to generate the control input for the next run. EMS is a computer-based system to monitor energy consumption, control operation, and optimize energy supplies and demands. EMS can be naturally modeled as MAS since each power-generated or power-consumed component of EMS can be cast as agent. Each agent of MAS is a dynamical system itself and has its own target such as tracking desired trajectory and minimizing energy. Moreover, there are common objectives of EMS which aim to attain its energy efficiency, reliability and optimality. Then one agent can cooperate with other agents to achieve some global objectives, in addition to their own local goals, by exchanging information with other agents. Lastly, we will explore some open research problems and their potential applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.