Abstract

A novel iterative conjugate heat transfer method is proposed for thermal modelling of a drill pump motor which is a constant speed three-phase induction motor. The major advantage of this technique is that it enables computational fluid dynamics (CFD) and heat transfer analysis of the rotor and the stator in a segregated manner. The two are then coupled in a separate annulus model, which represents the air gap, via boundary conditions on the annulus walls. This greatly reduces the total number of computational cells and enables good quality mesh generation - a pre-requisite for accurate CFD predictions. To validate this method, a baseline CFD and heat transfer analysis was done using FLUENT and the maximum temperature prediction was found to be within 1.75% of the previously done experiments on the existing design of the machine. Further, this method was applied to develop a heat transfer enhancement solution which reduced the maximum temperature in the drill motor from 203.5 °C to 172.9 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.