Abstract

Tagging has been recognized as a successful practice to boost relevance matching for information retrieval (IR), especially when items lack rich textual descriptions. A lot of research has been done for either multi-label text categorization or image annotation. However, there is a lack of published work that targets at item tagging specifically for IR. Directly applying a traditional multi-label classification model for item tagging is sub-optimal, due to the ignorance of unique characteristics in IR. In this work, we propose to formulate item tagging as a link prediction problem between item nodes and tag nodes. To enrich the representation of items, we leverage the query logs available in IR tasks, and construct a query-item-tag tripartite graph. This formulation results in a TagGNN model that utilizes heterogeneous graph neural networks with multiple types of nodes and edges. Different from previous research, we also optimize both full tag prediction and partial tag completion cases in a unified framework via a primary-dual loss mechanism. Experimental results on both open and industrial datasets show that our TagGNN approach outperforms the state-of-the-art multi-label classification approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.