Abstract

In recent years, Variational Autoencoders (VAEs) have been shown to be highly effective in both standard collaborative filtering applications and extensions such as incorporation of implicit feedback. We extend VAEs to collaborative filtering with side information, for instance when ratings are combined with explicit text feedback from the user. Instead of using a user-agnostic standard Gaussian prior, we incorporate user-dependent priors in the latent VAE space to encode users' preferences as functions of the review text. Taking into account both the rating and the text information to represent users in this multimodal latent space is promising to improve recommendation quality. Our proposed model is shown to outperform the existing VAE models for collaborative filtering (up to 29.41% relative improvement in ranking metric) along with other baselines that incorporate both user ratings and text for item recommendation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.