Abstract
Platelets play a critical role in both the initiation and progression of atherosclerosis, and even more so in the ensuing atherothrombotic complications. Low-dose aspirin remains the mainstay of antiplatelet therapy in high-risk patients by reducing the risk of myocardial ischemia, stroke or death due to cardiovascular disease. However, antiplatelet therapies lose their efficacy in people with diabetes mellitus, increasing the risk of future atherothrombotic events. The molecular mechanisms that promote platelet hyperactivity remain unclear but could be due to glycation-induced conformational changes of platelet membranes resulting in impaired aspirin entry or less-efficient acetylation/compensatory increase in COX-2 expression in newborn platelets. Emerging evidence from our laboratory and elsewhere suggest that enhanced platelet turnover (thrombopoiesis), particularly the production of immature reticulated platelets from the bone marrow, could contribute to atherosclerotic complications. We have identified a major role for neutrophil-derived S100A8/A9, a damage-associated molecular pattern, in driving reticulated thrombopoiesis by directly interacting with its receptors on Kupffer cells in the liver. In this review, we discuss the role of hepatic inflammation in driving reticulated platelet production and suggest potential targets to control their production, improve efficacy of current antiplatelet therapies and reduce the risk of atherothrombotic complications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.