Abstract
Langevin dynamics of a confined Brownian particle with coordinate-dependent diffusion involves multiplicative noise. Mathematically, equilibrium of such a stochastic system with multiplicative noise is an Itô-process. However, in physics literature, the process and resulting Itô-distribution are not considered to represent equilibrium because the distribution is a modified Boltzmann distribution. Itô-distribution is derived in this paper from Gibbs measure without involving any convention for stochastic integration, hence, no Itô vs Stratonovich dilemma. Then, in the light of an existing experiment reported in 1994 by Faucheux and Libchaber, we compare the Boltzmann distribution with the modified one for thermal equilibrium of Brownian particle near confining walls causing coordinate dependence of diffusion. Distribution corresponding to the Itô-process (modified Boltzmann) is shown to adequately account for the experimental results where the Boltzmann-distribution fails.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.