Abstract

Automatic skin lesion recognition has shown to be effective in increasing access to reliable dermatology evaluation; however, most existing algorithms rely solely on images. Many diagnostic rules, including the 3-point checklist, are not considered by artificial intelligence algorithms, which comprise human knowledge and reflect the diagnosis process of human experts. In this paper, we aimed to develop a semisupervised model that can not only integrate the dermoscopic features and scoring rule from the 3-point checklist but also automate the feature-annotation process. We first trained the semisupervised model on a small, annotated data set with disease and dermoscopic feature labels and tried to improve the classification accuracy by integrating the 3-point checklist using ranking loss function. We then used a large, unlabeled data set with only disease label to learn from the trained algorithm to automatically classify skin lesions and features. After adding the 3-point checklist to our model, its performance for melanoma classification improved from a mean of 0.8867 (SD 0.0191) to 0.8943 (SD 0.0115) under 5-fold cross-validation. The trained semisupervised model can automatically detect 3 dermoscopic features from the 3-point checklist, with best performances of 0.80 (area under the curve [AUC] 0.8380), 0.89 (AUC 0.9036), and 0.76 (AUC 0.8444), in some cases outperforming human annotators. Our proposed semisupervised learning framework can help with the automatic diagnosis of skin disease based on its ability to detect dermoscopic features and automate the label-annotation process. The framework can also help combine semantic knowledge with a computer algorithm to arrive at a more accurate and more interpretable diagnostic result, which can be applied to broader use cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.