Abstract
The amino acid sequences of two isozymes of catechol oxidase from sweet potatoes ( Ipomoea batatas) were determined by Edman degradation of BrCN cleavage fragments of the native protein and by sequencing of amplified cDNA fragments. Sequence alignment and phylogenetic analysis of plant catechol oxidases revealed about 80% equidistance between the two I. batatas catechol oxidases and approximately 40–60% to catechol oxidases of other plants. When H 2O 2 was applied as substrate the 39 kDa isozyme, but not the 40 kDa isozyme, showed catalase-like activity. The structure of the 40 kDa isozyme was modeled on the basis of the published crystal structure of the 39 kDa isozyme [T. Klabunde et al., Nat. Struct. Biol. 5 (1998) 1084]. The active site model closely resembled that of the 39 kDa isozyme determined by crystallography, except for a mutation of Thr243 (40 kDa isozyme) to Ile241 (39 kDa isozyme) close to the dimetal center. This residue difference affects the orientation of the Glu238/236 residue, which is thought to be responsible for the catalase-like activity of the 39 kDa isozyme for which a catalytic mechanism is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA)/Protein Structure and Molecular Enzymology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.