Abstract
Achieving the isotropic 3D resolution has been one of the most challenging in optical microscopy. When objective lenses with finite numerical aperture, their axial resolution becomes inferior to the lateral resolution. Although various sample rotation methods have been demonstrated to improve the axial resolution, the requirement of invasive sample manipulations has limited their applications for general complex-shaped specimens. Here, we propose a general method for the in-situ isotropic microtomography of freestanding specimens. Exploiting complex wavefront shaping and optical tweezers, we demonstrate that optimally structured 3D light traps can stably rotate a specimen by considering their 3D refractive index distribution, and reconstruct tomograms with isotropic resolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.