Abstract

The motion of objects traveling at relativistic speeds and subject only to isotropic photon drag (blackbody friction as a special case) is modeled. The objects are assumed to be perfectly absorbing. Analytic expressions for velocity and position as a function of time for objects subject to photon drag are obtained for the case in which the photons are constrained to one-dimensional motion. If the object is also assumed to be a perfect emitter of energy, analytic expressions are found for time as a function of velocity of the body for photons constrained to one-dimensional motion, and for a full three-dimensional isotropic photon background. The derivations are carried out entirely from the point of view of a reference frame at rest relative to the isotropic photon field, so that no changes of reference frame are involved. The results for the three-dimensional model do not agree with work by previous authors, and this discrepancy is discussed. The derivations are suitable for use in the undergraduate classroom. Example cases for a light sail and a micron-sized sand grain are examined for interactions with the cosmic background radiation, assuming a temperature of 3000 K, the temperature at the time the universe became transparent, and it is found that relativistic speeds would decay on a time scale of years.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.