Abstract

Determination of the isotopic signature of dissolved organic nitrogen (DON) is important to assess its dynamics in terrestrial ecosystems. Analysis of (15)N-DON, however, has been hindered by the lack of simple, reliable, and established methods. We evaluate three off-line techniques for measuring the (15)N signature of DON in the presence of inorganic N using a persulfate digestion followed by microdiffusion. The (15)N-DON signature is calculated from the difference between total dissolved (15)N ((15)N-TDN) and inorganic (15)N. We quantified the (15)N recovery and signature of DON, NH(4)(+), and NO(3)(-) in a series of inorganic N/DON mixtures (with a TDN concentration of 10 mg N L(-1)) for three lab protocols. Phenylalanine was used as a model compound for DON. The best lab protocol determined the concentration of inorganic N and TDN prior to diffusion using improved spectrophotometric techniques. An accuracy of 88% for (15)N-DON should be routinely possible; coefficient of variation was <2.9%. Hence, reliable (15)N-DON values are obtained over an DON concentration range of 2.3-10 mg L(-1). High levels of DON could influence the accuracy of (15)N-NO(3)(-) mainly at DON:NO(3)(-) ratios above 0.4. Evaluation of alternative NO(3)(-) measurements is still necessary. Our method is applicable for soil solution samples and soil extracts and has no risk of cross-contamination. Potential applications are large, in particular for (15)N tracer studies, and will increase our insight in DON behavior in soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.