Abstract

The doping dependent isotope effect in cuprates is explained in the framework of shape resonances in the superconducting gaps (belonging to the class of Fano resonances) in multicondensate superconductors. This new paradigm for high temperature superconductivity is based on the recent Fermiology scenario emerging from dHvA and quantum oscillation data showing a 2.5 Lifshitz topological transition due to the appearance of new small Fermi surface in the underdoped regime. The isotope effect is calculated for an electronic system near a band edge for a superlattice of stripes. The model reproduces the doping dependence of the isotope exponent behavior in cuprates and allows to identify the relative role of the intraband Cooper pairing and the configuration interaction between pairing channels from experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.