Abstract

ABSTRACTThermal initiators, although widely used in emulsion polymerization, are limited to high reaction temperatures due to their high activation energy. Redox initiators have low activation energies indicating that emulsion polymerization could be conducted at lower temperatures to save energy. In the present study, a redox initiator system comprised of hydrogen peroxide (H2O2) and ascorbic acid (AA) in conjunction with a Fe2+ ion catalyst is compared with a potassium persulfate (KPS) thermal initiator in an emulsion polymerization system consisting of n‐butyl methacrylate (BMA), sodium lauryl sulfate (SLS) and water. The dependence of particle number on surfactant and initiator concentrations shows that redox‐ and KPS‐initiated systems both follow the Smith‐Ewart theory. However, the high radical flux generated from the redox initiator results in the formation of much smaller latex particles and higher reaction rate with lower molecular weights. Latex particle size and molecular weight could also be influenced by reaction temperature. By using redox initiator, small monodisperse particles (diameter < 50 nm) can be achieved without using a large amount of surfactant. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43037.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.