Abstract

A previous work reported that the polymorphic crystallization behavior of isotactic polypropylene (iPP) can be efficiently tuned by the combination of controlling the melt structure (i.e., creation of an ordered structure by tuning the fusion temperature Tf by self-nucleation) and the addition of the α-/β-dual-selective nucleation agent (dual-selective β-NA, tradename WBG-II). In this study, we further investigated the impact of isothermal treatment on the polymorphic behavior and the isothermal crystallization kinetics of a β-iPP sample with different melt structures by differential scanning calorimetry (DSC). The results of isothermal crystallization kinetics study illustrated that as Tf decreased gradually from Region I to Region II and Region III, two sharp increases of the crystallization rate took place at the transition temperatures of Region II, showing that the enhancement of β-phase crystallization took place in a certain crystallization rate window. The calculation of the Avrami exponent n revealed that the two-dimensional growth of crystallites with instantaneous nucleation took place before and after the occurrence of the synergetic effect between the ordered structures and the dual-selective β-NA (when Tf ≥ 168 °C). Moreover, it was found that the occurrence of the synergetic effect in the fusion temperature range of Region II can evidently enhance the βc of the sample: by tuning the fusion temperature Tf and the isothermal crystallization temperature Tc, the relative percentage of β-phase (βc) of the single β-iPP sample with only 0.03 wt.% β-NA can be efficiently tuned in the wide βc range of 0 %–95.0 %; meanwhile, the sensitivity of βc to the isothermal crystallization temperature Tc was reduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.