Abstract

The presence of trace metals in wastewater brings serious environmental pollution that threatens human health as well as the ecosystem throughout the world due to their non-biodegradability nature. The present study focuses on the bioremediation of toxic trace metals, namely arsenic (As), cadmium (Cd), and chromium (Cr), using Acalypha wilkesiana leaf raw biomass. The optimization of various process variables was done to determine the removal percentage of trace metal using Acalypha wilkesiana leaf raw biomass, and the optimum conditions were an adsorbent dose of 0.5g, contact time 10h, 8h, and 10h, process temperature 30°C, initial concentration of trace metal as 30µg/L, 30mg//L, and 40mg/L, and pH of 7.5, 7 and 7.5 for As5+, and Cd2+ and Cr6+, respectively. Acalypha wilkesiana leaf raw biomass is characterized using a scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier transformation infrared spectroscopy (FTIR), zeta potential before and after adsorption of the trace metal ions. The study was well fitted for the equilibrium data for Langmuir isotherm for As5+, Cd2+, and Cr6+, Freundlich for As5+, Dubinin-Radushkevinch (D-R) for Cr6+, and Temkin for As5+ and Cr6+. The adsorption of all three trace metals was confirmed by the kinetics and thermodynamic studies to be following pseudo-second-order kinetics with endothermic as well as spontaneous processes, respectively. Thus, the present study indicates Acalypha wilkesiana leaf raw biomass as an effective and efficient novel biosorbent to remediate different trace metals from aqueous systems with its possible application in existing and novel methods for wastewater management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.